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NOTICE

o

This report was prepared as an account of Govermment sponsored
work. Neither the United States, nor the National Aeronautics
and Space Administration (NASA), nor any person acting on
behalf of NASA:

A.) Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, apparatus,
method, or process disclosed in this report may not
infringe privately owned rights; or

B.) Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method or process disclosed in
this report.

As used above, "person acting on behalf of NASA" includes

any employee or contractor of NASA, or employee of such con-
tractor, to the extent that such employee or contractor of NASA,
or employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his employment
or contract with NASA, or his employment with such contractor.
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SUMMARY

Generalized functions as developed by Laurent Schwartz are used to
include finite jump contributions to transforms of derivatives. The
expression of the Bilateral Laplace Transform of the derivative of a
piecewise continuous function is first derived and then specialized to
the unilateral transform. It is shown that the use of the Laplace
Transform of a generalized derivative resolves some well-known apparent
contradictions. In this new context the distinction between "prescribed"

"actual" initial values disappears. Although the present investigation

and
is restricted to ordinary differential equations, it can be extended to -

partial differential equationms.
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I. INTRODUCTION

In the analytical study of meteoroid impact on space vehicles, including
fuel tanks, the integral transform technique is one of the available methods.
The impact loadings, whether on the bumper or on the main structural wall,
are always abruptly applied. These abrupt loadings may be mathematically
represented by discontinuous functions. In the application of transform
methods, the treatment of discontinuous functions exhibiting finite jumps
as given in most textbooks and papers is less than satisfactory. In this
paper, a more adequate treatment utilizing the notion of generalized functions
is given,

The derivative of a function with finite discontinuities cannot be

transformed in accordance with the well known expression:
, = +
L {£'(t)} =s E(s) - £(0") (1-1)

which only applies to continuous functions, The contribution of finite jumps
to the righthand side of this equation is usually given as an exercise of no
particular significance in most textbooks (1,2). In physical applications,
such as hypervelocity impact problems, piecewise continuous functions are of
great importance, and their behavior will usually contain at least one jump
occurring at zero. The expression (1-1) does not include the contribution
due to this term, since the transform is defined as the 1imit of the Laplace
Integral as the lower limit tends to zero from the right. To include such
effects the range of integration can be extended to minus infinity, thus
introducing the Bilateral Laplace Transform (3). This procedure has limited
usefulness, since it can only be used to transform a known function, In the

solution of differential equations one has, in general, no advance information



about the location and magnitude of discontinuities that will appear in the
response as they must be part of the solution. Therefore, an extension of
the notion of function becomes necessary in order to transfdrm such abrupt
changes of unknown location and magnitude in the response.

Generalized functions as introduced by Laurent Schwarz (4) are ideally
suited to handle the particular problem under consideration. The expression

(1-1) becomes upon such a generalization:

L{g't)} =sL {g®)} - g (1-2)

where the jumps are implicitly contained in the definition of the generalized
function,
The expression given in (1-2) can be easily extended to the derivative

of order n:
L g™ )] = s L {g®)} - 8L g07) = verrug ™00 (1-3)

The equation (1~3) is both simpler and more general than its corresponding
expression for an ordinary function, as will be established in later sections.
A careful distinction between ordinary and generalized functions can
also resolve some apparent contradictions in partial differential equations

such as those recently studied by Boley (5) and Reid (6). It 1is expected

that the investigation of this problem will be the subject of another study.
In order to emphasize the underlying ideas, well known sufficient

conditions governing equation (1-1) will not be given, These conditions are

stated with precision and correct perspective in LePage (7).
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IT BACKGROUND AND PRELIMINARIES

A function is said to have a finite discontinuity at to>if f(tZ) and f(t;)
exist, and f(t:) # f(t;). The quantity J {f(td)} éﬁﬁ(t:) - f(t;) is known as
the "jump" or''saltus" of the function at the point,to; and may be represented
by J {f(to)} . J(to) or Jo' It can also be considered as a function J(t) of the
continuous variable t, which is zero except at a point of discontinuity.
This is in essence thé "Saltus-function" whose properties have been studied
by Hobson (5)., The jump can be considered as a directed quantity and may
be represented by an upward arrow if J {f(to)} > o and a downward arrow if
J {f(to)} < o, This representation is particularly useful in the formal
graphical differentiation of the jump multipliéd by the unit step function,

The only paper discussing the inclusion of jumps in the Laplace transform
of the derivative of a function seems to be that of Rasof (9).

Rasof (9) has incorporated the effect of jumps in f(t) into the

expression for L,{f'(t)} ,» by considering the definitions

L{E@} =L {f10} + [T, [£200) - £1(0)]e™ e (2-1)

L {£(t)} =L {£2(t)} # le [£1(t) ~ £,(t)]e St (2-2)

where fl(t) and fz(t) have been defined in the open intervals (o, t;) and
(t1,~) as shown in Figure 1,

The paper makes the incorrect assumption that the notation L {f(t)} is
ambiguous, because it does not state which of the two forms (2-1) or (2-2)
must be asqribed to £(t) in interpreting L {f(t)}. Actually, no such difficulty
exists, and the forms‘(Z—l) and (2-2) introduce the additional complication of
making it impqssible to determine the Laplace transforms from tables,
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Figure 1
fi(t) o<t <t

£(t) = {
£,(t) t >t

It is not difficult to see how complicated the expressions given in
(9) would become as the set of functions {fl’ fz’ cesey fn} defining the
plecewise continuous function f increases, This would lead to n different
representations for L {f(t)} » with the ensuing complicated expressions
for L {f'(t)} to be found in the same paper (9).

The complication in the proposed problem does not arise from the
source indicated by Rasof (9)., It is usually due to an incorrect identifi-
cation of the initial values in the transform of the derivative of a generalized
function,

It should again be pointed out that in a given physical problem, if
the function f(t) is the forcing function it is not difficult to obtain the
transform of its derivatives, even if f(t) is not continuous. This, to
some extent is the problem treated in (9). It is far more important and
difficult to identify the location and magnitude of the jumps that appear
in the response. This paper will be mainly devoted to a formulation that

will automatically accomplish this aim.
-




III ELEMENTARY FORMULATION AND SOLUTION OF THE PROBLEM
Consider the function represented in Figure 2, If this function is
considered an ordinary function it has the following representation in

the open intervals Ii:

£(t) = £,(t) tel, (i=1, 2, 3, 4)

where the following definitions are used:

-® < £ < tl t e I1
t; <t<o t e 12
o<t<t, t e I,
t, <t <o t e Iu

The same function can also be represented in the form of a regular generalized
function, by introducing the unit step function, so as to produce the functions
fi(t)’ t € Ii in the various intervals of definition. This function may be

denoted by g(t) and written explicitly as:
g(t) = [1-u(t-t;)] £, () + [u(t-t;) = u(t)] £,(t)

+ [u(t) - u(t-t,)] £,(8) + u(t=t,) £,(¢) (3-2)

where the use of the gate function defined as the difference of two step

functions has been made in order to annihilate the function outside the gate,

,f(t)¢

i1

At

-*

Figure 2
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It is well known that while there is no reason to distinguish between the
two different representations of the same function, namely the ordinary
function f(t) and the generalized function g(t); these two functions exhibit
marked differences under differentiation, due to the introduction of the
"Dirac delta" as the derivative of the unit step function. The ordinary
derivative of f(t) at a point of finite discontinuity such as t, o, and t2
is undefined; the generalized derivatives at those points are given by
I {E(e)} 6 (-t

In order to derive the expression of the generalized derivative g'(t)
in terms of the ordinary derivative f'(t) and the contribution of the
finite jumps, one can formally differentiate the expression for g(t) as
given by (3-2).

In order to achieve the desired result, it is more convenient to
rewrite the expression for g(t) in a form that will exhibit the jumps,

namely

g(t) = £1(t) + [£,(t) = £, ()] u(e-t)) + [£,(t) - £,(£)] u(t)

+[E, () = £5(60)] ult-t)

The interpretation of this equation is of interest in itself. It simply
indicates that the function g(t) can be constructed by a stepwise continuation
procedure starting with the function fl(t). To fl(t) is added

[£,(t) - fl(t)] u(t—tl) which brings the function up fz(t) from t,to infinity,

the next term builds the function up to fa(t) from zero to infinity, and so on,




The formal application of the differentiation of a product to (3-3)

yields:
g'(t) = £](t) + [£)(t) - £1(0)] u(e-t)) + [£3(t) = £)(t)] u(t)
+ [£)(t) - f;(t)] u(t-tz) + [fz(t) - fl(t)] ﬁ(t-tl) (3-4)
+[E£,00) = £,(t)] 6(t) + [£ (t) - fs(t)] §(t-t )

It is clear that the terms multiplied by the unit step function in the
expression (3-4) represent the ordinary derivative f'(t) and the terms
involving the Dirac delta can be rewritten in a form that will produce the

same integral according to the sifting property.

g'(t) = £1(t) + [£,(c) - £,(£)] 6(e-t ) + [£ (0) = £,(0)] 8(t)

(3-5)
-+ - -
[£,(t,) - £5(t )] 6(t-t )
It is clear that the coefficients of the delta functions represent the
jumps of the function at the points of discontinuity, This yields:
' = £ -
g'(t) = £'(t) + J {£(t)} s(r t)+3J {£()] s() (3-6)

+J {£(t)} 8(t-t)

There is no loss of generality in this derivation and it was presented in
detail in conformity with Figure 2. Summation signs at this stage would
have served no useful purpose in further clarification of the derivation.
Generalization now gives:
g'(t) = £'(t) + 2 J {f(ti)} 8(t-t,) (3-7)
i=1
Although the above derivation was formal, it can be shown that it is in

agreement with that obtained via the Theory of Distributions (10) and

finds its rigorous justification only in such an interpretation.




It would be of interest to determine the bilateral transform of the
generalized derivative of g'(t) after determining it for the ordinary derivative
£r(t).

Following Figure 2, this expression can be written as:

t1 -st ° -st k2 -st
L, {£7(e)} = [2} £',()e > de + [ + £ (e de + [+ £' (D) Tdt
1

+ [0 4 f'u(t)EStdt (3-8)
t2
Integration by parts, gives under the usual assumptions found in (7)

L, {£'®)} = s L, {£®)} - (£,¢e ™ - f1§t1’>] st

(3-9)
+ - + -, -st
= [£,(07) - £ (0] - [£(£7) - £ (£ )] &2
3 2 L 2 3 2
The quantities within the brackets are the terms indicating jump
contributions, and the result can be easily generalized to:
n -st
L {£'@®)}=sL {f)}- = J{f(tple 1 (3-10)
The bilateral transform of the generalized derivative (3-7) gives
on the other hand:
n -st
L {g'®}=1_{£r®W}+ £ J{f(t)}e 1 (3~-11)
2 2 {=1 i

Combining the two expressions (3-10) and (3-11) yields

L {g'®} =81, {£)} (3-12)

Clearly L2 {f(t)} = L2 {g(t)} since the function g(t) is a regular

generalized function containing only unit step functions in its description.



Therefore

L2 {g'(t)} =8 L2 {g(t)} (3-13)

The simplicity of this result is remarkable, It does not explicitly
contain any jump contributions, as these are implicit in the representation
of the generalized function and its derivatives in terms of the ordinary
function and its derivatives, as given by the previous expressions (3-4)
to (3-7).

It is of great practical interest to determine the simpler expressions
these reduce to in the case of a unilateral transform.

The transform of the derivative of the ordinary function becomes

using (3-10)

L {£'(t)} = s L {£(0)} - 3 {gCep) - £(oh) (3-14)

N~

i=1

where the Laplace integral is taken with a righthand lower limit, and

t, > 0.
J

The unilateral transform of g'(t) can be written as:

L{g' ()} =1 {£7()} +
j

n~mpg
=

J {f(tj)}ESCj

+ _ (3-15)
+ f(o) - f(o)

following (3-7), with tj > 0.
Elimination of L {f'(t)} between the two expressions (3-14), (3-15);
and insertion of L {f(t)} =1L {g(t)} and £(0o ) = g(o ) leads to the

important result:

L {g"(t)} =sL {g(t)} - g (o) (3-16)

It is interesting to note that as was already pointed out before,




the jumps do not explicitly appear in this formula, but are implicitly
contained in g(t), and that the initial value appearing in (3-16), is
the initial value from the left, Transform expressions for higher order
derivatives of ordinary functions become progressively more unwieldy due
to the presence of jumps in the various derivatives, but no such problem

exists with generalized derivatives., Successive substitutions lead to:

2
L {g"(t)}=s L {g(t)} -s g ) -g") (3-17)

and finally for the derivative of order n:
-1 - - -
L g™ @} = "L {g®)) - " g7 = vers gV 0T) (3-18)

This expression seems to be neither well-known, nor widely used, It is
in agreement, however, with that given by Zadeh and Descer (11), 1In
view of the importance of (3-18) in applications, various alternatives
to the preceding development leading to the same final result will be

explored in the next sections.

IV METHOD BASED ON THE CONSTRUCTION OF THE EQUIVALENT CONTINUOUS FUNCTION
It is possible to construct an equivalent continuous function fc(t)

from f(t) as represented in Figure 2, by sliding the curve fz(t)’ fa(t),

and £ (t) down by the jumps, J {f(tl)}, J {f(tl)} +J {£(o)} and I {£(t )]}

+J {f(o)} +J {f(tz)} respectively, This gives the explicit expression:

£,(t) = £(t) = J {£(t))} ule-t)) - [3 {£Cc D} + I {£@)}) u(e)

(4-1)
-[J {f(tl)} +J {f)} +J {f(tz)}]u(t-tz)
Recalling that for a continuous function fc(t)
L {f' (©)} =5 L {£_(t)} (4-2)

-10-




and taking into account the action of the unit step function on the various
terms leads to

L {£1(0)} = s L [ECe) - J{E(E Hut-t ) - J{E(o)} u(t)

(4=3)
=J{E(t ) u(t-t )]
2 2

It should be noted that no difference exists between f'(t) and fé(t) when
they are considered as functions in the ordinary sense, since they are
left undefined at the points where f(t) suffers a jump discontinuity,
The result (4~3) can now be generalized to:
- st
L {f'w}=sL {£®}~- £ J{fe)}e1 (4=4)
which confirms the result (3-10) previously obtained., If the function

is now considered as a generalized function it can be written as:
g(t) = £ (t) +J {f(tl)} u(t-tl) +J {£@)} u(t) +J {f(tz)} u(t-tz) (4-5)

Upon differentiation, generalization and making use of f'(t) = fé(t), it
follows that:

n
g'(t) =£f'(t) + £ J {f(ti)} §(t-t,) (4-6)
i=1

Taking transforms of both sides of (4.6)
n -st
L {g'@}=1 {£'@W}+ £ J{ftple"1 (4=7).
2 2 = i
i=1
Elimination of f'(t) between the two expressions (4-4) and (4=7)

leads, recalling that L2 {g(t)} =L, {f(t)}, to the following:

-11-



L {g'®} = s 1 {e(®)] (4-8)

This is precisely the expression obtained in (3-13), and from that

point on the derivation is as given in Section III,

V METHOD BASED ON THE STIELTJES INTEGRAL

It is possible to consider the Bilateral Laplace Transform of the

derivative of a function exhibiting finite jumps as the Stieltjes integral
Lo{e @} - [T e 4 {£e)) (5-1)

following Widder (12).

Inserting the expression (4-5) into (5-1) results in the following:

n
L ()} = [7 & 4 {fc(t)} + iil 3 {ee)} [, a5t u(t-t,)
or rewriting:
n
L {g' ()} = L {gr@)+ & g {eep} e (5-2)

i=1

where use has been made of a well known theorem in Stieltjes integration

in the evaluation of the second term (10). Combining (5-2) with (4=4)

yields
Lo {e'®} =s1 {s(o)} (5-3)

which is the same as (4-8),

VI METHOD BASED ON THE THEORY OF DISTRIBUTIONS
By definition the generalized derivative of a function f£(t) with

finite jumps can be defined as follows in the sense distributions (4)

-12~




<E', Y>> =a-<f, P> o= [T f(E) yI() dt (6-1)

where y(x) is a testing function, Particularizing this to the function

represented in Figure 2, the integral can be split over the appropriate

domains, yielding
=[5, £@ W@ de= - [T (0 v e - [T £ () at

- [52 £(t) (L) dt - I:Z £(t) ¥'(t) dt (6-2)
o]

Integrating (6~2) by parts in order to transfer all the differentiations

from ¢(t) to £(t) one obtains:

<£', v > =[5l gr(e) y(e) de + le £'(t) y(t) dt

+ j§2 £'(t) w(t) dt + f:z £'(t) y(t) dt (6-3)

+ J{f(ti)} V()

now

i=1
where use has been made of the fact that the testing function vanishes
outside a finite interval. Upon generalizing, it follows that:

n
<ty v = [ £ e de+ I {Ee)) u(ey) (6-4)
i=1

or denoting by g'(t) the generalized derivative given by the expression

(6-4)

n
g'(t) =f'(e) + £ J {f(ti)} 8(t-t,) (6-5)
i=1

where use of the sifting property has been made, Here the symbol f'(t)

13~




stands for the derivative of f(t) interpreted in the ordinary sense,
wherever it exists and it can be arbitrarily assigned any finite value where
it does not exist.

Therefore the generalized derivative is equal to the ordinary derivative
plus the jump contributions., It is this last term that insures that the
integral of g'(t) will yield the discontinuous function f(t) rather than
the equivalent continuous function fc(t) that would have been obtained
by considering the integral of £'(t) alone. In other words, the integration
of g'(t) automatically introduces the correct integration constant,

It should be noted that equation (6-5) is identical to (4~6) and its

transform is:

n
L {g'®} =1L {£'@}+ £ J £} (6-6)
2 2 i=1 *
On the other hand (4-4) gives:
n
L {f' @} =st {£®}- 1 J{re} % (6-7)
2 2 1=1

Eliminating £'(t) between (6-6) and (6-7) and recalling that L2 {f(t)} =

L2 {g(t)} results in

L {e'@®}=s1 {a®)]
The specialization of this result to the unilateral transform as well as

its extension to higher order derivatives have been developed in Section III.

VII SOLUTION AND DISCUSSION OF SOME ELEMENTARY PROBLEMS
1. Transform of the Space Variable

Consider the problem of a simply supported beam subjected to a con-

—14-



centrated load P as shown in figure 3
"

<

C V > X

Figure 3

The Euler-Bernoulli equation for the deflection of the beam is
E1y™ ) = v

where EI has been assumed constant. The usual operational solution

for this beam is to write w(x) =P §(x-a)
Ly (x) = - P §(x-a)

This equation is usually transformed into:

EL [s* 3(s) - s%y'(0)) - y"'(cN)] = - P &°°

where y(o+) = y"(o+) = 0 has been incorporated into (7-3). y(x) is

now obtained by a simple inversion, and produces the expected result,

(7-1)

(7-2)

(7-3)

The boundary conditions y(L ) = y"(L7) = O are taken into account in order

to determine y'(o+) and y"' (o+). Unfortunately, this correct result is due

to the compounding of two errors that cancel each other out., First, if

y(x) is considered an ordinary function, its third derivative y"'(x) will

exhibit a jump equal to the shear -P at the point x = a, and its contribution

must be included in the expression of the transform (3-14). This, however,

=15~




would lead to the incorrect solution if the righthand side of (7-2)
is retained. It is not difficult to see the reason for which one would
not obtain the correct solution. Consider the equation

ELy'''(0) = 22 - P u(x-a) (7-4)

If y(x) in this equation is considered an ordinary function then the

L . . . .
derivative is EI y( ) = 0., Since u(x-a) is discontinuous at x = a,

and therefore not differentiable there, its value can be arbitrarily taken as

Zero,

Taking the transform of y(x) and inserting the appropriate jump

contribution yields:
EL [s%5(s) - s¥ (") - s2y'(07) = s y"(o")
eyt + try -as
-y'""'0) - J {y"""(@}e] = 0

Recalling that

3 {y'"" (@} = (7-5)

and incorporating y(o+) y"(o+) = 0 yields

EI [s%5(s) - s2y'(0") - y''"(o")} = - P &°8 (7-6)

This is precisely the equation obtained before as a result of neglecting
the jump contribution, and replacing it by the derivative of the unit
step function which should have been taken as zero., It is seen that

the net effect of these two errors annihilate each other, thereby
producing a correct result, Although the inclusion of the jump due to
the shear would solve the particular problem under consideration, this

procedure cannot admit any generalization. The deflection of the beam

-16-




can be considered as the response of the beam to the concentrated
load input P and therefore, should be uniquely determined, once the
system parameters, initial conditions and the input are completely
known., In other words, the jump in the shear is part of the response
and should be reflected explicitly in the expression of the deflection.
To incorporate the jump condition in the shear into the transformed
deflection equation, is to assume in an a priori fashion the partial
solution of the problem, It is not difficult to see that such
anticipatory knowledge would be much more difficult in the case of
linear differential equations with variable coefficients, where the
location and magnitude of the jumps is not asveasy to ascertain. The
theory of the Green's Function would be of help here, but this is
equivalent to obtaining the complete solution of the problem,

To the knowledge of this writer, Churchill (14) is the only author
to have pointed out the inclusion of the jump in the shear as an
alternative to the classical treatment of the problem usually given in
books on Transform Theory. The literature seems to give no indication as
to the effect that the classical treatment is incorrect or that the in-
troduction of the concept of a generalized function is necessary to treat
the problem satisfactorily.

Rewriting the equation for the shear in 0 < x < L+ as:

Pa

EI y"'(x)= L

u(x) -~ P u(x-a) +

{—b u (x-L) (7-7)

If v(x) is now considered a generalized function, its derivative

becomes

Ly ) = B ot) ~ P s(x-a) + 12 §(x-L) (7-8)

-17-




Clearly, since righthand side is a generalized function, the lefthand
side has to be considered as a generalized function and treated as such
in its transform., For the sake of clarity, if this generalized function
is denoted by yg(x), one obtains the following transformed equation in

accordance with (3-18).

L= e e3v (A7) o 229 (a Y = cuM (A ) o 'Y 7
EI [s yg(s) s yg(o ) - s yg(o ) - sy g(o ) -y g(o )]

_Pb -as , Pa -Ls _
=1 Pe ™ + e (7-9)

It should be noted that the reaction at the left was introduced,

since lefthanded limits now make this reaction part of the input.

Clearly, if one considers the beam as extending beyond the left support
y'"(0 ) = y'""(0 ) since the bending moment and shear vanish along the
extension of the beam to the left, which is a straight line. In addition,
if the origin is taken to coincide with the left support y(o ) = o.

Therefore the equation reduces to:

-as

- 1 - -
5 (s) = y'() + 1 EIE _ Pe + Pa eLs (7-10)
& s? st s“EI s“EIL
Inverting
o P b x3 _ P<x-a>3 Pa<x-L>°
yg(x¥) =y (o) x + gy 6EL GEIL (7-11)

where <x-a>3 is the Macaulay Bracket notation for (x~a)3 u(x-a), and
the last term has no contribution to the deflection unless the beam
extends beyond the right support,

The boundary condition y(L) = 0 serves to determine the only

<18~




unknown y'(o ) remaining in the equation. Inserting this value which
is:

_ 212
y'e7) = B O7E ) (7-12)

into the deflection equation yields:

Pb

CEIL [ (b2-L2) x + x3 - %-<x—a>3] (7-13)

y(x) =

which produces the jump in the shear as part of the response, without

any such a priori assumption.

2. Transform of the Time Variable

Consider the equation of motion of a harmonic oscillator
x(t) + p2x(t) = o (7-14)
where p2 = k/m subject to initial conditionms x(0 ) = i(o_) = 0 and
struck by a blow of impulse IO. The problem can be handled in two
different ways via the Laplace Transform,
Let x(t) be an ordinary function. Then

¥(t) + p%x(t) = 0 (7-15)

I
Subject to x(o+) = 0 x(0+) = Eg- where the second condition has been

obtained by a consideration of linear momentum, The transformed equation

is
_ Io/m
x(g) = ————— (7-16)
52 + p2

after insertion of initial conditions, it follows that

I
_ _0

x(t) = r_— sin pt t >0 (7-17)
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Let x(t) now be a generalized function. The equation of motion

can now be written as:

I
x(t) + p2 x (t) = 52 8(t) (7-18)

subject to x(o ) = i(o—) = 0.

The transformed equation now reads

_ Io/m
x(s) = —————oro
s2 + p2 (7-19)
and its inverse is
Io
x(t) = — sin pt u(t) (7-20)

It is easy to show that this solution satisfies the given equation
and the initial conditions either by formal substitution or by a simple
application of distribution theory.

A number of textbooks such as (13) use the equation

I
%(t) + p2x(t) = 52 8 (t) (7-21)

with rightsided initial conditions x(o+) = i(o+) = 0, and explain the
discrepancy between the assumed zero initial velocity and the actual
initial velocity Io/m by appealing to momentum considerations., It is clear
that no contradiction actually exists, and the apparent contradiction so
frequently encountered in the literature can be easily resolved by considering
generalized functions which automatically exhibit lefthanded limits in

the transforms of their derivatives.
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VIII CONCLUSIONS

It has been shown that the fallure to recognize the difference between
an ordinary function and a generalized function, particularly of their
derivatives, and transforms of derivatives; has led to well-known discrepancies
between the assigned initial values and the actual initial values. This
has been discussed at length in the literature by several authors such
as (16). This difficulty can be avoided by the use of the concept of
generalized functions or distributions developed by Laurent Schwartz (4).

An elementary derivation of the transform of the generalized derivative
is developed in this paper and applied to typical problems in which it is
shown that some of the classical contradictions disappear. It is hoped
that a more widespread understanding of these relatively new concepts by those
interested in applications, will give them a more powerful method of approach
to boundary value problems, particularly those leading to partial differential

equations,
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